Теперь давайте отойдем от гороха и классики и рассмотрим более практически интересные задачи. Вообще тема решения генетических задач интересна не только с общеобразовательной точки зрения, но и с практической. Ведь благодаря ней мы можем прослеживать цвет глаз, волос, группу крови и другие признаки у своей семьи. Можно даже пробвать прогнозировать эти признаки у будущих детей ;)
Итак, III закон Менделя (закон независимого наследования) - при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).
У матери голубые глаза и светлые волосы (гомозиготна по обоим признакам). У отца карие глаза и темные волосы (гетерозиготен по обоим признакам). Рассчитайте возможные генотипы и фенотипы детей.
Для решения задач на дигибридное скрещивание используется решетка Пеннета.
Схема решения задачи:
Таким образом мы с вами рассмотрели на конкретных примерах три закона Менделя.
Мне бы хотелось обратить ваше внимание еще на несколько законов.
1. Закон сцепленного наследования признаков.
Закон сцепленного наследования, открытый Морганом, гласит: гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе.
Организм любого вида имеет большое разнообразие признаков, которое обеспечивается тысячами генов. В то же время число хромосом невелико, так у человека их всего 23 пары. Следовательно, в каждой хромосоме располагаются сотни и тысячи генов. Наследование признаков, гены которых находятся в одной хромосоме, исследовал американский генетик Т. Морган. Гены, расположенные в одной хромосоме, называют группой сцепления. Количество групп сцепления в клетке равно гаплоидному набору хромосом.
Дальнейшие исследования Моргана показали, что сцепление не всегда бывает абсолютным. Причина тому — кроссинговер (обмен участками между гомологичными хромосомами), который происходит в профазе первого деления мейоза. Кроссинговер нарушает группы сцепления генов и ведет к появлению особей с перекомбинацией признаков.
Частота кроссинговера зависит от расстояния между генами: чем ближе располагаются гены в хромосоме, тем меньше вероятность кроссинговера между ними и наоборот. Эта зависимость используется, для составления генетических карт хромосом, где по вероятности кроссинговера рассчитывается положение генов, в хромосоме.
Итак, III закон Менделя (закон независимого наследования) - при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).
У матери голубые глаза и светлые волосы (гомозиготна по обоим признакам). У отца карие глаза и темные волосы (гетерозиготен по обоим признакам). Рассчитайте возможные генотипы и фенотипы детей.
Для решения задач на дигибридное скрещивание используется решетка Пеннета.
Схема решения задачи:
Таким образом мы с вами рассмотрели на конкретных примерах три закона Менделя.
Мне бы хотелось обратить ваше внимание еще на несколько законов.
1. Закон сцепленного наследования признаков.
Закон сцепленного наследования, открытый Морганом, гласит: гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе.
Организм любого вида имеет большое разнообразие признаков, которое обеспечивается тысячами генов. В то же время число хромосом невелико, так у человека их всего 23 пары. Следовательно, в каждой хромосоме располагаются сотни и тысячи генов. Наследование признаков, гены которых находятся в одной хромосоме, исследовал американский генетик Т. Морган. Гены, расположенные в одной хромосоме, называют группой сцепления. Количество групп сцепления в клетке равно гаплоидному набору хромосом.
Дальнейшие исследования Моргана показали, что сцепление не всегда бывает абсолютным. Причина тому — кроссинговер (обмен участками между гомологичными хромосомами), который происходит в профазе первого деления мейоза. Кроссинговер нарушает группы сцепления генов и ведет к появлению особей с перекомбинацией признаков.
Частота кроссинговера зависит от расстояния между генами: чем ближе располагаются гены в хромосоме, тем меньше вероятность кроссинговера между ними и наоборот. Эта зависимость используется, для составления генетических карт хромосом, где по вероятности кроссинговера рассчитывается положение генов, в хромосоме.
2. Закон гомологических рядов наследственной изменчивости.
В процессе изучения закономерностей наследования мутационной (наследственной) изменчивости Н. И. Вавилов открыл закон, известный в науке под названием закона гомологических рядов наследственной изменчивости, который был сформулирован следующим образом:
Если виды и роды генотипически связаны друг с другом, единством происхождения, то они образуют ряды форм организмов, сходных по своим признакам, т. е. гомологические ряды.
Так, пшеница, рожь, ячмень — это филогенетически близкие виды — роды класса однодольных покрытосеменных растений. Они являются злаками. В природе распространены остистые формы злаков, так как остистость является формой приспособления злаковых растений против поедания их животными. Для практических нужд человек вывел безостые формы, которые для хозяйственной деятельности более удобны, чем остистые. В процессе выведения безостых сортов злаков все эти три вида, принадлежащие к разным родам, прошли одинаковые этапы «искусственной эволюции», давая сходные промежуточные формы:
остистые формы → малоостистые формы → безостые формы.
Эти формы характерны и для пшеницы, и для ржи, и для ячменя.
Гомологические ряды известны не только для злаков, но и для других растений.
В процессе изучения закономерностей наследования мутационной (наследственной) изменчивости Н. И. Вавилов открыл закон, известный в науке под названием закона гомологических рядов наследственной изменчивости, который был сформулирован следующим образом:
Если виды и роды генотипически связаны друг с другом, единством происхождения, то они образуют ряды форм организмов, сходных по своим признакам, т. е. гомологические ряды.
Так, пшеница, рожь, ячмень — это филогенетически близкие виды — роды класса однодольных покрытосеменных растений. Они являются злаками. В природе распространены остистые формы злаков, так как остистость является формой приспособления злаковых растений против поедания их животными. Для практических нужд человек вывел безостые формы, которые для хозяйственной деятельности более удобны, чем остистые. В процессе выведения безостых сортов злаков все эти три вида, принадлежащие к разным родам, прошли одинаковые этапы «искусственной эволюции», давая сходные промежуточные формы:
остистые формы → малоостистые формы → безостые формы.
Эти формы характерны и для пшеницы, и для ржи, и для ячменя.
Гомологические ряды известны не только для злаков, но и для других растений.